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ABSTRACT We present a second-order accurate finite
difference method for numerical solution of the incompress-
ible Navier-Stokes equations in deforming domains. Our
approach is a generalization of the Bell-Colella-Glaz predic-
tor–corrector method for incompressible f low. In order to
treat the time-dependence and inhomogeneities in the incom-
pressibility constraint introduced by presence of deforming
boundaries, we introduce a nontrivial splitting of the velocity
field into vortical and potential components to eliminate the
inhomogeneous terms in the constraint and a generalization
of the Bell-Colella-Glaz algorithm to treat time-dependent
constraints. The method is second-order accurate in space
and time, has a time step constraint determined by the
advective Colella-Friedrichs-Lewy condition, and requires the
solution of well behaved linear systems amenable to the use of
fast iterative methods. We demonstrate the method on the
specific example of viscous incompressible f low in an axisym-
metric deforming tube.

The incompressible Navier-Stokes equations are a combina-
tion of evolution equations and constraints caused by the
incompressibility condition. As such, the formulation of ap-
propriate time-discretization methods is more subtle than that
for evolution equations. To address this issue, Chorin (1)
introduced projection methods based on the Hodge decom-
position of any vector field into a divergence-free part and a
gradient of a scalar field. Projection methods are fractional
step methods for which an intermediate velocity is computed
that does not necessarily satisfy the incompressibility con-
straint. This velocity then is corrected so that it satisfies the
constraint. More recently, Bell, Colella, and Glaz (BCG) (2)
introduced a predictor–corrector method based on Chorin’s
ideas. Some of the key advantages of their method are that the
advective terms can be treated by using explicit high-resolution
finite difference methods for hyperbolic partial differential
equations and that only linear systems coming from standard
discretizations of second-order elliptic and parabolic partial
differential equations, which are amenable to solution using
fast iterative methods such as multigrid, must be solved. This
leads to a method that is second-order accurate in space and
time, a stability constraint on the time step due only to the
Courant-Friedrichs-Lewy condition for the advection terms,
and a robust treatment of underresolved gradients in the Euler
limit. This method has been the basis for the extensive
development of new algorithms for the treatment of a variety
of low-Mach number flow problems (3–11).

The purpose of this paper is to present the extension of the
BCG algorithm to the case of moving deformable boundaries.
The principal difference is that the boundary conditions for the
divergence-free constraint become both inhomogeneous and
time-dependent. There have been a number of previous meth-

ods that model deformable boundaries (12–14), but none
combine the accuracy, efficiency, and robustness of the BCG
approach. We attack this problem by using two ideas. First, we
eliminate the inhomogeneity in the constraint equation by
performing a nontrivial Hodge splitting of the velocity field
into a potential component that carries the inhomogeneities in
the boundary conditions for the divergence constraint and a
vortical component that satisfies an evolution equation with
time-dependent, but homogeneous, constraints. The second
idea is a generalization of the BCG time discretization for the
solenoidal component that properly accounts for the temporal
variation in the constraint. The end result is a method that
retains the advantages of the BCG algorithm but for the more
general case of flows in deforming domains.

Physical Problem

We consider the problem of flow in an axisymmetric, f lexible
tube (see Fig. 1). The dashed upper boundary of the figure is
the centerline, or axis of symmetry, of the tube where r 5 0.
There is f low into the tube at the left boundary where the
classic Poiseuille velocity profile for viscous flow in pipes is
prescribed. The wall of the tube is the bottom boundary, r 5
R(z, t). This infinitely thin solid wall boundary is allowed to
move in the middle section of the tube with a prescribed
velocity. The inlet and outlet remain fixed.

Split-Velocity Formulation. We alleviate the problem of
inhomogeneous boundary conditions with a split-velocity for-
mulation on a moving, mapped grid. We first define a con-
tinuous mapping from an abstract fixed coordinate system, j
5 (j, h), to real axisymmetric coordinates which are time-
dependent, x(t) 5 (r(t), z(t)):

x 5 x~j, t!. [1]

We then define divergence, gradient and Laplacian operators:

div~u! 5 J21¹jz~JF21u!

grad~p! 5 F2T¹j p

Df 5 div~grad~f!!, [2]

where u and p are velocity and pressure, respectively, and J is
the determinant of F 5 xyj. The incompressible Navier-
Stokes equations in mapped coordinates are

utuj 1 div@~u 2 s! ^ u# 5 2grad~p! 1 nDu

div~u! 5 0, [3]

where s 5 xyt is the velocity of the moving coordinate
system and n is the kinematic viscosity. The boundary condi-
tions for viscous incompressible flow in an axisymmetric
deforming tube are as follows: (i) axis of symmetry (no-flow)
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uzn 5 0; (ii) solid wall (prescribed boundary motion) u 5 ub;
(iii) inflow (prescribed Poiseuille flow) u 5 0, v 5 2(1 2 r2);
and (iv) outflow uyz 5 0. In addition, we need a boundary
condition on p at outflow and will defer discussion for later.

We use the Hodge decomposition (15) to split the velocity
field into its divergence-free and potential components, ud and
up, respectively:

u 5 ud 1 up

div~ud! 5 0

up 5 grad~f!. [4]

Here, f is the solution to Laplace’s equation, Df 5 0, with
normal boundary conditions (see Fig. 1 for geometry): (i) axis
of symmetry (no-flow) upzn 5 0; (ii) solid wall (prescribed
boundary motion) upzn 5 ubzn; (iii) inflow (constant mean
flow) upzn 5 vin; and (iv) outflow (conservation of mass,
one-dimensional mean flow) upzn 5 vout, where vout is the
one-dimensional solution obtained from conservation of mass
for flow in a flexible tube with fixed inlet and outlet (see ref.
16 for details).

This leads to the following equation of motion for ud:

ud

t
U

j

5 ^~ud, up! 2 grad~p!

div~ud! 5 0, [5]

where

^~ud, up! 5 2As~ud, up! 1 nDu

As~ud, up! 5 udz¹up 1 ~u 2 s!z¹ud

p 5
f

t
U

x

1
uupu2

2
1 p. [6]

A Bernoulli pressure, p, has been defined to absorb all
gradients in the split, transformed equations. If the flow is
frictionless and purely potential (u 5 ¹f), the equation of
motion (Eq. 5) reduces to Bernoulli’s equation.

The boundary conditions on ud are as follows: (i) axis of
symmetry, udzn 5 0; (ii) solid wall, udzn 5 0, udzt 5 (ub 2 up)zt;
(iii) inflow, ud 5 0, vd 5 1 2 2r2; and (iv) outflow, udyz 5
0. The boundary condition on p at outflow is p 5 0 at outflow.
This is required for the potential f low solution, up, to satisfy the
Euler equations.

These boundary conditions lead to div and grad operators
appearing in Eq. 5 that are formally adjoints to each other:

E
V

div~w!cd9 5 2E
V

~wzgrad~c!!d9, [7]

if w and c satisfy the boundary conditions. The reason this is
the case is that the boundary conditions for ud and p are set
so that the boundary terms coming from application of the
divergence theorem to *V¹z(wc)d9 vanish.

Model Problem

A model problem is discussed to address the issue of a
time-dependent incompressibility constraint. The model prob-
lem is a general form of the equation of motion (Eq. 5). Let
f, u [ 5n, p [ 5m, A 5 n 3 m matrix where u, A, f 5 u(t),
f(t), A(t) are smooth functions in time. The constrained system
is comprised of an equation of motion and a homogeneous
constraint:

du
dt

5 f 2 ATp

Au 5 0. [8]

u corresponds to the fluid velocity in Eq. 5, and f corresponds
to the advection and viscosity terms. A and AT are adjoint
matrix operators that correspond to div and grad and include
boundary conditions.

The constraint can be used to obtain an equation for p in
order to evolve the system exactly. To obtain a ‘‘pressure-
Poisson’’ type of equation, we differentiate the constraint
(dydt(Au) 5 0) and compare to the divergence of the equation
of motion Eq. 8:

Lp 5 Af 1
dA
dt

u, [9]

where L [ AAT. Solvability is assumed for Eq. 9. In the case
of an incompressible fluid, either L is invertible, or it has a
null-space that is independent of time.

One can express the constraint condition in Eq. 8 in terms
of projection operators. We define Q 5 ATL21A and P 5 I 2
Q. The operators P and Q are projections onto the subspace
of vectors that satisfy the constraint and onto the orthogonal
complement of that subspace: If Au 5 0, then Pu 5 u and
Qu 5 0. Note that these projection operators are functions of
time if A, AT are functions of time.

First, we consider the case in which A is independent of time.
The projection operator can be used to eliminate the con-
straint and reduce the problem to a system of ordinary
differential equations:

du
dt

5 Pf, [10]

where we use the fact that PATp 5 0. This system is equivalent
to the original one, provided the initial data satisfy the
constraint, i.e. (Au)(0) 5 0. In that case, the BCG discreti-
zation reduces to

un11 5 un 1 DtP~fn11y2! 5 P~un 1 Dtfn11y2!, [11]

where Dt is the discrete time step and u0 5 u(0). This
discretization is inherently second-order because of the use of
the midpoint rule for f. Also, P(un11) 5 un11 if P(un) 5 un.

The BCG discretization can be written in predictor-
corrector form:

u* 5 un 1 Dt~fn11y2 2 ATpn21y2!

un11 5 P~u*!

Lpn11y2 5
1
Dt

A~un 1 Dt~fn11y2 2 ATpn21y2!! 1 Lpn21y2

[12]

where un ' u(tn), pn21y2 ' p(tn 2 Dty2).
Next, we generalize the BCG discretization for the model

problem with time-dependent A. The difficulty is that, in the
time-independent case, we obtained a second-order accurate

FIG. 1. Flow through an axisymmetric deforming tube.
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method by eliminating the constraint and applying the mid-
point rule to the resulting system of ordinary differential
equations. A reduction corresponding to Eq. 10 does not exist
when the constraint is time-dependent, and we must construct
a second-order accurate discretization directly for the original
constrained system. Such a discretization is given as follows:

u* 5 un 1 Dt~fn11y2 2 ~An11y2!Tpn21y2!

un11 5 Pn11~u*!

5 Pn11~un 1 Dt~fn11y2 2 ~An11y2!Tpn21y2!!

Ln11pn11y2 5
1
Dt

An11~un 1 Dt~fn11y2 2 ~An11y2!Tpn21y2!!

1 Ln11pn21y2. [13]

Let wnew, qnew be solutions approximated by the predictor-
corrector scheme:

wnew 5 Pn11~w 1 Dt~fn11y2 1 ~An11y2!Tq!!

qnew 5 q 1
1
Dt

~Ln11!21 An11~w 1 Dt~fn11y2

1 ~An11y2!Tq!. [14]

Define ue
n 5 u(tn), pe

n11y2 5 p(tn11y2) where u, p are solutions
to the model problem (Eq. 8). If w 5 ue

n and q 5 pe
n21y2 1

O(Dt), then
(i) the method is second-order accurate:

wnew 5 ue
n11 1 O~Dt3!

and
(ii)

qnew 5 pe
n11y2 1 O~Dt!.

Proof of i. In order to prove the consistency of the predictor–
corrector discretization, the solution wnew is compared to the
standard of a Crank-Nicolson solution, which uses the mid-
point rule. It is noted that the midpoint rule for ordinary
differential equations yields global second-order accuracy.

wmid ; ue
n 1 Dt~fn11y2 1 ~ATpe!

n11y2!

5 ue
n11 1 O~Dt3!

Pn11wmid 5 wmid 1 O~Dt3!

wnew 2 wmid 5 DtPn11~An11y2!T~pe
n11y2 2 q! 1 O~Dt3!

5 O~Dt3!,

because Pn11(An11y2)T is O(Dt).
Proof of ii.

pnew 5 q 1 ~Ln11!21 SAn11 2 An

Dt
ue

n 1 An11f n11y2

1 An11~An11y2!TqD
5 ~Ln11!21 SAn11 2 An

Dt
ue

n 1 An11f n11y2D
1 An11~An11y2 2 An11!Tq

5 pe
n11y2 1 O~Dt!.

Note that ii depends only on q being bounded independent of
time; i.e., the proof begins with a statement of the truncation
error and ends with the same statement.

There are several points to be made regarding this method.
The first is that it requires only the application of a succession
of fixed time operators, rather than a solution to problems
resulting from differentiation of the constraint with respect to
time, such as Eq. 9. In particular, this leads to a solution that
satisfies the constraint at the end of each time step. The second
point is that, although we obtain a second-order accurate
method for the solution u, the approximation for p is only
first-order accurate in time, which is, in fact, all that is required.
Finally, although we will apply this method to a very specific
approach to discretizing the spatial derivatives, the time dis-
cretization presented here is itself quite general and could be
applied equally well to other discretization strategies.

Discretization for Incompressible Flow

We apply the new time discretization to the split-velocity
formulation for incompressible flow. Finite difference approx-
imations are used to discretize the derivatives in the equations
of motion. Any time step in the algorithm begins with the
knowledge of a cell-centered discrete velocity, Ud,i, j

n , at time tn,
and a discrete cell-centered Bernoulli pressure, pi, j

n21y2, at the
lagged time, tn21y2 5 tn 2 Dty2. Also, the discrete potential
velocity, Up, is known at all times from the discrete Dirichlet
problem that it satisfies; it is known at both edges and cell
centers through averaging operators. The discrete vortical
velocity and pressure are evolved by the predictor–corrector
scheme discovered in the model problem. Evolution of the
dependent variables is predicated on a known initial solution
that satisfies the boundary conditions and the incompressibil-
ity constraint. Dn, Gn11y2, Ln, and Ln

n are the discrete repre-
sentations of the operators div, grad, D, and Dn, respectively,
including boundary conditions.

We now apply the time-discretization in the previous section
to the system of equations (Eq. 5) describing the time evolution
of ud. We do this in two steps. First, we compute a time-
centered estimate of the right-hand side corresponding to
fn11y2. Following ref. 2, we solve the system of equations

U* 5 Un 1 ~Up
n11 2 Up

n! 1 Dt~2As~Ud, Up!
n11y2

1
n

2
~Ln

n~Un! 1 Ln
n11~U*!! 2 Gn11y2pn21y2)

Un 5 Ud
n 1 Up

n. [15]

Here, As(Ud, Up)n11y2 is an estimate of the advective terms at
time tn 1 Dty2, computed by using a second-order accurate
Godunov method. If pn21y2 were replaced by pn11y2, this
would be a Crank-Nicolson discretization for the diffusion
terms. As is, it is sufficient to obtain an O(Dt2) estimate of
n(Ln

n(Un) 1 Ln
n11(U*))y2.

In the second step, we apply the discrete evolution. We form

U*d 5 U* 2 Up
n11

5 Ud
n 1 Up

n11 1 Dt~2As~Ud, Up!
n11y2

1
n

2
~Ln

n11~U*! 1 Ln
n~Un!! 2 Gn11y2pn21y2) [16]

and obtain the updated solution:

Ud
n11 5 U*d 2 Dt~Gn11pn11y2 2 Gn11y2pn21y2!

pn11y2 5 ~Ln11!21Dn11U*d 1 pn21y2. [17]
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Results

We present the convergence results of two flow regimes for
incompressible viscous flow in an axisymmetric deforming
tube. The flow is characterized by Reynolds number, Re 5
v#dyn, where v# is the mean velocity, d is the diameter of the tube
(d 5 2 in all cases), and n is the kinematic viscosity. The
following grid motion is used:

R~t! 5 R0S1 2
1
4

~1 2 sin p~0.5 1 t!!Dexp~24~z2zc!2!, [18]

where R0 is a radius of unity for an initially rectangular grid
and zc is the axial location of the extremum for a Gaussian
movement.

The first case is a low Reynolds number calculation, Re 5
8, where v# 5 1 and n 5 0.25. The convergence results for this

case are shown in Table 1 at a time t 5 0.5 when the inward
boundary velocity is at a maximum where the tube has moved
to a position that is 0.875 of the original radius. The second
case is a high Reynolds number calculation, Re 5 200, where
v# 5 1 and n 5 0.01. The convergence results for this case are
shown in Table 2 at a time t 5 1 when the boundary has
stopped moving at a fully pinched tube position, or 0.75 of the
original radius. (See ref. 16 for details on convergence anal-
ysis.)

We also present the salient flow features for a complete
cycle of the inward and outward movement of the tube wall.
Fig. 2 depicts snapshots of the axial velocity for Re 5 200 at
times when the wall velocity is at a maximum (see Fig. 1 for
geometry). A notable feature in this f low scenario is a very
sharp gradient that is captured in the axial component of the
velocity at time t 5 3.5, when the hump is moving back inward
from its fully expanded outward position. The strong gradient,
which indicates the presence of a shear layer, exists in the axial
direction as well as the radial direction. Another observation
is movement of the point of separation, which is indicated in
the axial component of velocity by a change in sign from
positive to negative. As the hump expands outward, the
separation point marches from a location just before the
midpoint of the hump toward the inlet.
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FIG. 2. Axial velocity in tube with inwardyoutward-moving hump
(inlet Re 5 200). (a) Time t 5 1.5 when the wall is moving outward
to the flat position. (b) Time t 5 2.5 when wall is moving outward from
flat position. (c) Time t 5 3.5 when the wall is moving inward to the
flat position. (Scale 5 21.703–3.773.)

Table 1. Error for flow in deforming tube (Re 5 8)

Case e1y16 Rate e1y32 Rate e1y64

u 4.01 3 1023 1.69 1.24 3 1023 1.75 3.68 3 1024

v 8.25 3 1023 2.04 2.01 3 1023 2.01 4.99 3 1024

Table 2. Error for flow in deforming tube (Re 5 200)

Case e1y16 Rate e1y32 Rate e1y64

u 2.71 3 1022 2.34 5.36 3 1023 1.94 1.40 3 1023

v 7.50 3 1022 2.39 1.43 3 1022 2.22 3.06 3 1023
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Correction

MATHEMATICS. For the article ‘‘Numerical simulation of in-
compressible viscous f low in deforming domains,’’ by Phillip
Colella and David P. Trebotich, which appeared in number 10,
May 11, 1999, of Proc. Natl. Acad. Sci. USA (96, 5378–5381),
the authors note the following. In line 14 of the abstract,
‘‘Colella-Friedrichs-Lewy condition’’ should read ‘‘Courant-
Friedrichs-Lewy condition.’’
www.pnas.orgycgiydoiy10.1073ypnas.011559698
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